

PACKAGING AS KEY TO SYSTEM EVOLUTION

Stephane Lessard Senior Specialist -Photonics System Architecture Ericsson Research

CHALLENGES

- > We ship systems designed for
 - Radio (Base stations)
 - IP routing
 - Microwave backhaul
 - Optical backhaul and Transport

- What are we most pressed for ?
 - Power consumption + Thermal
 - Cost
 - Capacity and scalability
 - Footprint + BW densification
 - Cloudification

Mobile traffic growth dominated by Data

THE NETWORKED SOCIETY-Y2018 FORECAST

60% annual video & traffic growth

12X greater mobile data traffic

9.1 billion mobile subscriptions

7 billion mobile broadband subscriptions 1.7 billion in 2013

4.5 billion smartphone subscriptions
1.2 billion in 2012

WCDMA/HSPA to cover 85% of world's population 55% in 2012

850 million subs. for PCs, mobile routers, and tablets

300 million in 2012

11 GB/month mobile PC traffic
2.5 GB/month in
2012

LTE to cover 60% of the world's population 10% in 2012

WHAT IT MEANS...

- Densification of cell coverage with LTE pushes footprint, power consumption to their limit
 - ARPU is quite flat! Still, we need to evolve systems and keep prices flat.
 - Energy costs are higher: In some cases, the entire CAPEX of a router is paid in electricity in 15 months!
 - Cooling in building practices is also at an inflexion point; liquid cooling isn't practical in many cases
- > Copper is now at inflexion point: moving to 25G involves costs and power (e.g. Megtron-6 laminate, CDRs, etc...)
 - Copper also limits rethinking of system architectures
 - Going electrical outside of package is expensive: densify!
- We can't fit enough MSA's (e.g. SFPs) on faceplate to follow processing needs!

PACKAGING AS A SOLUTION?

- Yes! : Combining functions, potentially coming from various vendors, can be done through packaging
 - Chip scale packages
 - Multi-Chip Modules
 - -SoC
- > I/O is an issue; power, density etc... can be solved through silicon photonics
 - This is a natural evolution, along ecosystem ways of working, if packaging is used to e.g. exploit silicon photonics to solve I/O
- > Still: Thermal is an issue in all scenarios

USE CASE: OPTICAL I/O

- > Silicon photonics is a prime candidate
 - But we don't want to lock ourselves to 130nm, 90nm or 65nm!
 - We want to enable dual source for sourcing of I/O's: can't assume all foundries will support photonics.
- The solution lies in packaging
 - Commoditizes silicon photonics as I/O blocks
 - Dual source easier to setup (in most cases)
 - Fully benefits from electrical 2.5D and 3D ecosystem: silicon photonics blends right in as an E-O function

SOME IMPACTED SYSTEMS

Routers

TAKE AWAYS

- Industry will need to keep high speed signal inside package as long as possible to cope with
 - Cost, power and density
 - Processing complexity
- > Packaging ecosystem will have to align
 - For photonics interfaces E.g.: An "optical equivalent of BGA";
 something providing a standard physical interface
 - Capabilities to design interposers (Si, organic) in house
- > Thermal is critical: telco has many systems without "active" cooling.
 - What's good for a server isn't viable for a top-of-mast radio system!

ERICSSON